Sequence-structure matching in globular proteins: application to supersecondary and tertiary structure determination.

نویسندگان

  • A Godzik
  • J Skolnick
چکیده

A methodology designed to address the inverse globular protein-folding problem (the identification of which sequences are compatible with a given three-dimensional structure) is described. By using a library of protein finger-prints, defined by the side chain interaction pattern, it is possible to match each structure to its own sequence in an exhaustive data base search. It is shown that this is a permissive requirement for the validation of the methodology. To pass the more rigorous test of identifying proteins that are not close sequence homologs, but that have similar structure, the method has been extended to include insertions and deletions in the sequence, which is compared to the fingerprint. This allows for the identification of sequences having little or no sequence homology to the fingerprint. Examples include plastocyanin/azurin/pseudoazurin, the globin family, different families of proteases and cytochromes, including cytochromes c' and b-562, actinidin/papain, and lysozyme/alpha-lactalbumin. Turning to supersecondary structure prediction, we find that alpha/beta/alpha fragments possess sufficient specificity to identify their own and related sequences. By threading a beta-hairpin through a sequence, it is possible to predict the location of such hairpins and turns with remarkable fidelity. Thus, the method greatly extends existing techniques for the prediction of both global structural homology and local supersecondary structure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of protein supersecondary structures based on the artificial neural network method.

The sequence patterns of 11 types of frequently occurring connecting peptides, which lead to a classification of supersecondary motifs, were studied. A database of protein supersecondary motifs was set up. An artificial neural network method, i.e. the back propagation neural network, was applied to the predictions of the supersecondary motifs from protein sequences. The prediction correctness r...

متن کامل

In Silico Analysis of Primary Sequence and Tertiary Structure of Lepidium Draba Peroxidase

Peroxidase enzymes are vastly applicable in industry and diagnosiss. Recently, we introduced a new kind of peroxidase gene from Lepidium draba (LDP). According to protein multiple sequence alignment results, LDP had 93% similarity and 88.96% identity with horseradish peroxidase C1A (HRP C1A). In the current study we employed in silico tools to determine, to which group of peroxidase enzymes LDP...

متن کامل

Secondary and tertiary protein structure I. Hierarchy of protein structure

Four levels in protein structural organization are commonly identified. Primary structure is a sequence of amino acids. Secondary structure is represented by regular local conformations of polypeptide chain, such as α-helix or β-strand. The combinations of two secondary structure elements are also sometimes referred to as secondary (or supersecondary) structure. The example is a β-hairpin forme...

متن کامل

Improved method for prediction of protein backbone U-turn positions and major secondary structural elements between U-turns.

A new and more accurate method has been developed for predicting the backbone U-turn positions (where the chain reverses global direction) and the dominant secondary structure elements between U-turns in globular proteins. The current approach uses sequence-specific secondary structure propensities and multiple sequence information. The latter plays an important role in the enhanced success of ...

متن کامل

Predicting transmembrane beta-barrels and interstrand residue interactions from sequence.

Transmembrane beta-barrel (TMB) proteins are embedded in the outer membrane of Gram-negative bacteria, mitochondria, and chloroplasts. The cellular location and functional diversity of beta-barrel outer membrane proteins (omps) makes them an important protein class. At the present time, very few nonhomologous TMB structures have been determined by X-ray diffraction because of the experimental d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 89 24  شماره 

صفحات  -

تاریخ انتشار 1992